skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tomov, Martin_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Vascular cell overgrowth and lumen size reduction in pulmonary vein stenosis (PVS) can result in elevated PV pressure, pulmonary hypertension, cardiac failure, and death. Administration of chemotherapies such as rapamycin have shown promise by inhibiting the vascular cell proliferation; yet clinical success is limited due to complications such as restenosis and off‐target effects. The lack of in vitro models to recapitulate the complex pathophysiology of PVS has hindered the identification of disease mechanisms and therapies. This study integrated 3D bioprinting, functional nanoparticles, and perfusion bioreactors to develop a novel in vitro model of PVS. Bioprinted bifurcated PV constructs are seeded with endothelial cells (ECs) and perfused, demonstrating the formation of a uniform and viable endothelium. Computational modeling identified the bifurcation point at high risk of EC overgrowth. Application of an external magnetic field enabled targeting of the rapamycin‐loaded superparamagnetic iron oxide nanoparticles at the bifurcation site, leading to a significant reduction in EC proliferation with no adverse side effects. These results establish a 3D bioprinted in vitro model to study PV homeostasis and diseases, offering the potential for increased throughput, tunability, and patient specificity, to test new or more effective therapies for PVS and other vascular diseases. 
    more » « less
  2. Abstract 3D bioprinting is revolutionizing the fields of personalized and precision medicine by enabling the manufacturing of bioartificial implants that recapitulate the structural and functional characteristics of native tissues. However, the lack of quantitative and noninvasive techniques to longitudinally track the function of implants has hampered clinical applications of bioprinted scaffolds. In this study, multimaterial 3D bioprinting, engineered nanoparticles (NPs), and spectral photon‐counting computed tomography (PCCT) technologies are integrated for the aim of developing a new precision medicine approach to custom‐engineer scaffolds with traceability. Multiple CT‐visible hydrogel‐based bioinks, containing distinct molecular (iodine and gadolinium) and NP (iodine‐loaded liposome, gold, methacrylated gold (AuMA), and Gd2O3) contrast agents, are used to bioprint scaffolds with varying geometries at adequate fidelity levels. In vitro release studies, together with printing fidelity, mechanical, and biocompatibility tests identified AuMA and Gd2O3NPs as optimal reagents to track bioprinted constructs. Spectral PCCT imaging of scaffolds in vitro and subcutaneous implants in mice enabled noninvasive material discrimination and contrast agent quantification. Together, these results establish a novel theranostic platform with high precision, tunability, throughput, and reproducibility and open new prospects for a broad range of applications in the field of precision and personalized regenerative medicine. 
    more » « less